二叉树遍历

二叉树的遍历

二叉树的遍历,主要有四种方式

  • 先序遍历
  • 中序遍历
  • 后序遍历
  • 层序遍历

实现方式有两种

  • 递归实现
  • 迭代实现

先序遍历

前序遍历的顺序是 根节点-左子树-右子树 。意思是从根节点开始,要一直访问左子树,直到没有左孩子,然后访问右子树。

前序遍历

中序遍历

中序遍历的过程是 左子树-根节点-右子树

后序遍历

后序遍历的过程就是 左子树-右子树-根节点

源码

准备一个二叉树

1
2
3
4
5
6
7
      1
/ \
2 3
/ \ / \
4 5 6 7
/ \
8 9

推理出,理论输出:

1
2
3
4
前序输出: 1 2 4 5 3 6 8 9 7
中序输出: 4 2 5 1 8 6 9 3 7
后序输出: 4 5 2 8 9 6 7 3 1
层序输出: 1 2 3 4 5 6 7 8 9

下面是源码实现,有两种实现方式

  • 递归方式
  • 迭代方式
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
package main

import "fmt"

// 定义
type Tree struct {
Val int
Left *Tree
Right *Tree
IsRoot bool
}

func NewTree() (*Tree) {
node8 := Tree{Val: 8}
node9 := Tree{Val: 9}
node7 := Tree{Val: 7}
node6 := Tree{Val: 6, Left: &node8, Right: &node9}
node5 := Tree{Val: 5}
node4 := Tree{Val: 4}
node3 := Tree{Val: 3, Left: &node6, Right: &node7}
node2 := Tree{Val: 2, Left: &node4, Right: &node5}
root := Tree{Val: 1, Left: &node2, Right: &node3, IsRoot: true}
return &root
}

// 递归生成一个二叉树
func NewTree2(t *Tree, depth int) {
if depth < 3 {
t.Left = &Tree{Val: 2 * depth}
t.Right = &Tree{Val: 4 * depth}

NewTree2(t.Left, depth+1)
NewTree2(t.Right, depth+1)
}
}

func main() {
root := NewTree()

//t := Tree{}
//NewTree2(&t, 1)
//
//root = &t

PreOrder(root)
fmt.Println()

MidOrder(root)
fmt.Println()

PostOrder(root)
fmt.Println()

LevelOrder(root)
fmt.Println()

LevelOrder2(root)
fmt.Println()

PreOrder2(root)
fmt.Println()

MinOrder2(root)
fmt.Println()

PostOrder2(root)
fmt.Println()
}

// 前序遍历
func PreOrder(t *Tree) {
if t == nil {
return
}
fmt.Print(t.Val, " ")
PreOrder(t.Left)
PreOrder(t.Right)
}

// 中序遍历
func MidOrder(t *Tree) {
if t == nil {
return
}
MidOrder(t.Left)
fmt.Print(t.Val, " ")
MidOrder(t.Right)
}

// 后续遍历
func PostOrder(t *Tree) {
if t == nil {
return
}
PostOrder(t.Left)
PostOrder(t.Right)
fmt.Print(t.Val, " ")
}

// 层序遍历
func LevelOrder(t *Tree) {
queue := []*Tree{t}

if t == nil {
return
}
// 注意此为2层循环
for len(queue) > 0 {
length := len(queue)
for length > 0 {
length--
if queue[0].Left != nil {
queue = append(queue, queue[0].Left)
}
if queue[0].Right != nil {
queue = append(queue, queue[0].Right)
}
fmt.Print(queue[0].Val, " ")
queue = queue[1:]
}
}
}

// 前序遍历
func PreOrder2(root *Tree) {
queue := make([]*Tree, 0)

for root != nil || len(queue) != 0 {
for root != nil {
fmt.Print(root.Val, " ")
queue = append(queue, root)

root = root.Left
}

root = queue[len(queue)-1].Right
queue = queue[:len(queue)-1]
}
}

// 中序遍历
func MinOrder2(root *Tree) {
queue := make([]*Tree, 0)

for root != nil || len(queue) != 0 {
for root != nil {
queue = append(queue, root)
root = root.Left
}

node := queue[len(queue)-1]

fmt.Print(node.Val, " ")
queue = queue[:len(queue)-1]
root = node.Right
}
}

// 后续遍历
func PostOrder2(root *Tree) {
queue := make([]*Tree, 0)

var lastVisited *Tree

for root != nil || len(queue) != 0 {
for root != nil {
queue = append(queue, root)
root = root.Left
}

n := queue[len(queue)-1]
if n.Right == nil || n.Right == lastVisited {
fmt.Print(n.Val, " ")
queue = queue[:len(queue)-1]
lastVisited = n
} else {
root = n.Right
}
}
}

type Queue struct {
Val []*Tree
len int
}

func (q *Queue) Push(t *Tree) {
q.Val = append(q.Val, t)
}

func (q *Queue) Pop() (node *Tree) {
len := q.len

if len == 0 {
fmt.Println("queue is empty")
}
node = q.Val[0]
if len == 1 {
q.Val = []*Tree{}
} else {
q.Val = q.Val[1:]
}
return
}

func (q *Queue) Len() int {
q.len = len(q.Val)
return q.len
}

// 层序遍历2
func LevelOrder2(t *Tree) {
q := Queue{}
q.Push(t)

for q.Len() > 0 {
node := q.Pop()

if node == nil {
panic("node is nil")
}
if node.IsRoot {
fmt.Print(node.Val, " ")
}
if node.Left != nil {
fmt.Print(node.Left.Val, " ")
q.Push(node.Left)
}
if node.Right != nil {
fmt.Print(node.Right.Val, " ")
q.Push(node.Right)
}
}
}

参考网站

https://studygolang.com/articles/31047

https://visualgo.net/zh/heap

http://tigerb.cn/2020/04/21/go-base/tree-traverse/

螃蟹 wechat
欢迎您扫一扫上面的微信公众号,订阅我的博客!
坚持原创技术分享,您的支持将鼓励我继续创作!